Core Sensors
  • Home
  • Sensor Types
    • Differential Pressure Transducers
      • CS14 Differential Pressure Transducer
      • CS54 Non-Incendive Differential Pressure Transducer
      • CS84 Intrinsically Safe Differential Pressure Transducer
      • View All Differential Products
    • Hazardous Location
      • CS50 Non-Incendive Pressure Transducer
      • CS51 Non-Incendive Low Pressure Transducer
      • CS54 Non-Incendive Differential Pressure Transducer
      • CS80 Intrinsically Safe Pressure Transducer
      • CS81 Intrinsically Safe Low Pressure Transducer
      • CS82 Intrinsically Safe Submersible Pressure Transducer
      • CS84 Intrinsically Safe Differential Pressure Transducer
      • View All Hazardous Products
    • High Temperature Pressure Sensors
      • CS-DHP Downhole Pressure Sensor
      • CS-HTP Miniature Pressure Sensor
      • CS-HTR High Temp Ratiometric Pressure Sensor
      • View All High Temperature Products
    • Industrial OEM Pressure Transducers
      • CS10 Industrial Pressure Transducer
      • CS-SM Steel Mill Pressure Transducer
      • CS11 Compact OEM Pressure Sensor
      • View All Industrial Products
    • Submersible Pressure Transducers
      • CS12 Submersible Pressure Transducer
      • CS15 Non-Clogging Submersible Pressure Transducer
      • CS82 Intrinsically Safe Submersible Pressure Transducer
      • View All Submersible Products
    • Temperature Transmitters
      • CS20 Industrial Temperature Transmitter
      • View All Temperature Products
    • Pressure Sensor Accessories
      • Cooling Adapter
      • Mating Connectors
      • Mating Cable Assemblies
        • M12 Cordset
        • Turck Minifast Cordset
        • 6-Pin Bayonet Cordset
      • View All Accessories
  • Applications
    • Differential Pressure Transducers – Filtration
    • Hydrogen
    • Liquid Level / Tank Monitoring
    • Oxygen Service
    • Remote Telemetry / Wireless
    • Wastewater
  • Wiring
    • Wiring Guides
    • 4-20mA Output Schematic
    • Voltage Output Schematic
    • Millivolt Output Schematic
  • How To Buy
  • Company
    • About Core
    • Blog/News
    • Frequently Asked Questions
  • Contact
    • Contact Us
    • RMA Request
  • Request A Quote
  • Search
  • Menu Menu
You are here: Home1 > Wiring2 > Millivolt Output Signal

Millivolt Output Signal

The millivolt output signal is the oldest signal, yet still has popular uses today. Sensors with millivolt output can be roughly separated into two categories; compensated and uncompensated. Compensated sensors are generally ones where the output has been trimmed with resistors to have a set zero and span tolerance, along with a specific sensitivity (commonly 5 or 10mV/V) over a specified temperature range such as 0-55°C. Uncompensated millivolt output is generally the raw output of the sensor that has not been adjusted or trimmed, and is usually stated with a typical output range, such as 100mV output, +/-25mV @ 10VDC excitation. With either choice, one common advantage of millivolt output is the response time to changes in pressure. The frequency response time of millivolt output sensors is fast because there are no circuits to slow down the signal changes.

Choosing compensated vs uncompensated depends on the needs of the application. If the application includes a signal conditioner that simply amplifies the sensor output, compensated is usually the better choice because the sensor is already set to meet published performance over a specified temperature range. If the application is one where the equipment will be characterized and compensated/error corrected as a whole using a signal conditioner that can set zero, span, and temperature compensation, an uncompensated output is a good choice because it maximizes that output available for adjustments and error correction.

In physical terms, one of the primary advantages of millivolt output sensors is size and packaging flexibility. Because there are no ICs and other large electronic chips to fit inside the sensor housing, millivolt sensors are more flexible in design to fit into embedded systems and customized equipment.

Wiring guides for voltage output signal pressure transducers can be found here.

Click here to start searching for the pressure transducer that is ideal for your application.

Millivolt Wiring Schematic

How To Guide

For this how to guide, we have three components; power supply (labeled as 1 in the schematic), Core Sensors pressure transducer, and a meter or other DAQ system (labeled as 2 in the schematic).

1) Power Supply – Connect the positive (+) terminal of the power supply to the +V pin or wire of the transducer. Connect the negative (-) terminal of the power supply to the Ground (GND) pin or wire of the transducer.

2) Meter or other data acquisition (DAQ) –  Connect the COM terminal of the meter of DAQ to the -Signal pin or wire of the transducer. Connect the Volts input terminal of the meter or DAQ to the +Signal pin or wire of the transducer.

This will complete the 4-wire circuit.

* In certain circumstances, there may be an additional pin or wire used as a case ground. This connection is not critical to the output signal but may be critical to maintain listed certifications of the transducer. Please refer to our wiring guides to verify wiring prior to installation.

Advantages

  • Noise resistance due to lack of ICs.
  • Fast response time to changes in pressure.
  • Perfectly ratiometric, so any power supply will work (up to the max VDC)
  • Flexible design possibilities for embedded systems

Disadvantages

  • Requires 4-wire connection
  • Possible low signal to noise ratio in applications where EMI/RFI is present
  • Limitations on signal transmission distances
  • Often requires external/additional signal conditioner

Common Applications

High Performance Liquid Chromatography (HPLC) – mV sensors are common in HPLC because often the system and pumps are calibrated as a whole and/or the system already has an on-board signal conditioner with trimming features to re-calibrate the equipment when needed. Also, mV sensors can be made as custom embedded units more easily, resulting in lower “dead volume”, which is important in HPLC applications to reduce cross-sample contamination.

Mass Flow Controllers (MFC) – Use of mV sensors in MFCs is common for similar reasons as the HPLC, with the additional need for fast response time. The fast response time of mV sensors in the MFC is vital to fine tune the amount of product that is allowed to flow into the process.

Scales and weighing equipment/hydraulic press and forming – mV sensors are used in hydraulic weighing and machine press applications to replace load cells. The mV output of the sensors is similar to the mV output of many load cells, allowing OEMs to minimize system redesign when upgrading from a load cell to a pressure sensor.

Higher ambient temperature applications – In applications such as super-heated steam, downhole drilling and MWD, or applications measuring pressure in a engine compartment of a moving or stationary engine, temperatures can climb to a range that is not compatible with ICs and ASICs. Because of the lack of ICs, mV units can generally be installed in locations that are simply too hot for amplified sensors, and the signal is transmitted to a remote signal conditioner. The CS-HTP high temperature pressure sensor and CS-DHP downhole pressure sensor are recommended for applications where high temperatures are a concern.

Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R) – There are numerous applications in HVAC/R systems where pressure is measured. Often, there is a need for two separate sensors to be used to measure pressure in two spots to provide operators with the differential pressure reading. These PLCs are designed to accept two mV signals and report the differential pressure. The CS10 industrial pressure transducer with a millivolt output signal would be an ideal solution to handle this type of application.

Connect With Our Sales Team

Have questions? Need a quote? We are ready to help! Fill out the form and a member of our sales team will contact you to discuss your requirements. You can also give us a call at (862) 245-2673.

    628 Route 10 West, Unit #8
    Whippany, NJ 07981 USA

    Phone: (862) 245-2673
    Fax: (973) 585-7383
    Email: [email protected]

    Helpful Links

    Sensor Types
    Wiring Diagrams
    How To Select A Sensor
    How To Buy
    RMA Request

    Company

    About Core Sensors
    Blog/News
    Frequently Asked Questions
    Contact Us

    Follow Us


    Watch Us On YouTube Follow Us On LinkedIn
    © 2023 Core Sensors LLC
    • Terms and Conditions
    • Warranty Information
    Scroll to top
    Let's Connect

    – Need a quote?
    – Have a technical question?
    – Don’t see what you need?

    Fill out the form and a member of our sales team will contact you to discuss your requirements. You can also give us a call at (862) 245-2673.